Exam Seat No:_____ C. U. SHAH UNIVERSITY Winter Examination-2019

Subje Subje Seme Instru	ect Nam ect Code ster : 5 ctions:	e: Structural Analysis - III e: 4TE05STA1 Date : 19/11/2019	Branch: B.Tech (Civil) Time : 10:30 To 01:30	Marks : 70
(1 (2 (3 (4) Use () Instru) Draw) Assu	of Programmable calculator & any actions written on main answer be r neat diagrams and figures (if near me suitable data if needed.	y other electronic instrument is prook are strictly to be obeyed. cessary) at right places.	rohibited.
Q-1 Atten	a) b) c) d) e) f) g) h) i) j) k) l) m) n) n)	Attempt the following question Define Space Frame. What is Plastic hinged? Differentiate between straight be What do you mean by post-tensi Define Plane Truss. Define tendon. What is curved beam? What do you mean by force and What is Hoop Compression? What is shape factor? Enlist Various types of dome. Define Collapse load. Write any two advantages of dom Define Gride. four questions from Q-2 to Q-8	ns: eam and curved beam. oning? displacement? me.	<pre>(14) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1</pre>
Q-2	(A) (B)	Attempt all questions Develop a stiffness matrix for a Analyse the following beam by s	beam. stiffness matrix method. 60kN/m -5 m Fig.1	(14) (7) (7)

Q-3 Attempt all questions (14) Explain the characteristics of stiffness matrix (A) (6)

Analyse following beam by flexibility matrix method. **(B)** (8)

Fi	σ.	2
	۶.	~

		1 18:2	
Q-4		Attempt all questions	(14)
	(A)	Explain Spherical domes with Sketch.	(7)
	(B)	Analyse the spherical dome subjected to UDL.	(7)
Q-5		Attempt all questions	(14)
-	(A)	A conical Dome of 100 mm thickness and 3.5 m rise is to be used to cover a hall of 20m diameter. The live load of 2.0 kN/m ² is acting over the dome surface. Calculate meriditional stress and hoop stress at the base of dome. Density of concrete is 25 kN/m^3	(7)
	(B)	A circular beam curved in plan symmetrically supported on six columns with radius of 5m. Determine the variation of S.F, B.M and Torsional Moment, When it is subjected to UDL load Of 5 kN/m throughout.	(7)
Q-6		Attempt all questions	(14)
•	(A)	Analysis of curved in plane with fixed supports.	(7)
	(B)	Calculate the M_p required for a fixed beam of span 8m and loaded by collapse UDL of 20 kN/m over half 4m and a collapse concentrated load of 50kN at 6m from left span.	(7)
0-7		Attempt all questions	(14)
C	(A)	Explain concept of plastic hinge.	(7)
	(B)	Explain Various types of losses in Pre tensioning and Post tensioning in beam	(7)
Q-8			(14)
-		Analyse the RC frame shown in fig.3 by approximate method (portal method) of analysis Draw SE and PM diagram	. ,

